

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Parte – 1:	FÍSICA II	Nº Questões:	40
Duração:	90 minutos	Alternativas por questão:	5
Ano:	2023		,

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do círculo por cima da letra. Por exemplo, pinte assim
- A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro

	à lápis HB, e só depois, q	uando tiver certeza da	s respostas, à esferográfica	(de cor azul ou preta).			
1.	A superfície de uma estre	ela tem uma área de	$10^{18} m^2$ e emite 6×10^{26} watt	s. Qual é o comprimen	to de onda que corresponde ao		
			luz emitida por essa estrela				
	A. 270 nm	B. 280 nm	C. 287 nm	D. 290 nm	E. 295 nm		
			e caracterizam por possuír	em:			
	A. mesma frequênc		esma velocidade	C. mesmo comprim	nento de onda		
2	D. mesma amplitud		erentes amplitudes	. 1	Ilma amissana da vádio que		
3.	A velocidade de propagação das ondas electromagnéticas no ar é de aproximadamente $3 \times 10^8 m/s$. Uma emissora de rádio que transmite sinais com frequência de $9.7 \times 10^6 Hz$ pode ser sintonizada em ondas curtas na faixa de aproximadamente:						
	A. 19 m	B. 25 m	C. 31 m	D. 49 m	E. 60 m		
4.				or unidade de tempo e por	unidade de área de 200 W. Qual		
	a temperatura, em 0 C, a	B. 33.4 ⁰ C		D . 243,7 °C	F -33 4 0 C		
	INCOME DESCRIPTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADD	SCHOOL CONTRACT BOOK					
5.				ente ao pico da radiaçã	io do corpo negro para a zona		
	convectiva, cuja temper				7. 100		
	A . 30	B . 300	C . 33	D. 45	E. 100		
6.	Qual é a razão entre as	energias irradiadas	por um corpo negro a 2500	Kea 1250 K?			
	A. 2	В. 8	C. 32	D. 4	E. 16		
7.				comprimento de onda	mínimo dos raios - X emitidos		
	pelo tubo? ($e = 1.6 \times 10^{-19}$	C; $h = 7 \times 10^{-34} J.s$)				
	A. $1,46 \times 10^{-11}$	B . 1,46×10 $^{-10}$	C. $1,46 \times 10^{-8}$	D . 1,46×10 ⁻	E . $1,46 \times 10^{-6}$		
8.	O efeito fotoeléctrico é u	ım fenómeno pelo qu	ual				
		tricas podem emitir h					
	B. a fissão nuclear						
			erficies quando há incidênc	ia de luz sobre elas.			
		etricas podem ser foto	emitem um brilho forte.				
9.	Os rajos X são produzid	los em tubo de vácuo	nos quais electrões são sub	metidos a uma rápida des	saceleração ao colidir contra		
٠.	um alvo metálico. Os ra	ios X consistem nun	n feixe de:		,		
	A. electrões	B. fotões	C. protões	D. neutrões	E. positrões		
10.	Quando a luz incide sobre	e uma fotocélula ocor	re o evento conhecido como	efeito fotoeléctrico. Nes	sse evento		
	A. é necessária uma energia mínima dos fotões da luz incidente para arrancar os electrões do metal.						
	B. os electrões arrancado	s do metal saem todo	s com a mesma energia cine	ética.	in aldente		
	C. a quantidade de electro	ões emitidos por unid	ade de tempo depende do qu	antum de energia da luz	incidente.		
	D. a quantidade de electr	de um fotão de luz in	lade de tempo depende da fr icidente é directamente prop	orcional à sua intensidad	e.		
11.	A função trabalho do só	dio é de 2 3 eV Ou	al é em eV a energia cir	nética máxima dos foto	pelectrões emitidos se a luz de		
11,	comprimente de ende d	a 200 um incidir cabr	e uma superfície de sódio?	(h = 6.625 × 10 -34 /s · 1eV	$=1.6 \times 10^{-19} J$		
			C. 1,50	D1,84	E6.44		
10	A. 6,44	B. 1,84			ual será, em gramas, o valor d:		
12.		THE SECOND SECON	HILIOCSHILEPLACAU UC JZ UIAS	c uma massa uc occ 2. O	S B		
	massa desta amostra, tr			D. 80	E. 3,125		

13.	Há pouco mais de 100 anos, Ernest Rutherford descobriu que havia dois tipos de radiação, que chamou de α e β. Com relação a					
	essas partículas, pode-se afirmar que: A. as partículas β são constituídas por 2 protões e 2 neutrões.					
	 A. as partículas β são constituídas por 2 protões e 2 neutrões. B. as partículas α são constituídas por 2 protões e 2 electrões. 					
	 C. as partículas β são electrões emitidos pelo núcleo de um átomo instável. 					
	D. as partículas α são constituídas apenas por 2 prótons.					
14.	 E. as partículas β são constituídas por 2 electrões, 2 protões e 2 neutrões. Vinte gramas de um isótopo radioactivo decrescem para cinco gramas em dezasseis anos. A meia-vida desse isótopo é: 					
	A. 4 anos B. 16 anos C. 32 anos D. 10 anos E. 8 anos					
15.	Partículas alfa, partículas beta e raios gama podem ser emitidos por átomos radioactivos. As partículas alfa são iões de hélio					
	carregados positivamente. As partículas beta são electrões. Os raios gama são ondas electromagnéticas de frequência muito alta. Na desintegração de ₈₈ Ra ²²⁶ resultando na formação de um núcleo ₈₆ Rn ²²² , pode-se inferir que houve a emissão:					
	A. apenas de raios gama B. de uma partícula alfa C. de uma partícula beta					
	D. de duas partículas beta e duas partículas alfa E. de raios gama e de duas partículas beta					
16.	O elemento radioactivo natural 232 Th, após uma série de emissões alfa e beta, isto é, por decaimento radioactivo, converte-se em um					
	isótopo não-radioactivo, estável, do elemento chumbo, $^{208}_{82}$ Pb . O número de partículas alfa e beta, emitidas após o processo, é,					
	respectivamente, de:					
	A. 5 e 2 B. 5 e 5 C. 6 e 4 D. 6 e 5 E. 6 e 6 O elemento urânio é um radioisótopo físsil, isto é, pode sofrer diversos decaimentos nucleares, formando, assim, novos elementos.					
17.	Em um desses decaimentos, o urânio dá origem ao elemento tório segundo a reacção:					
	$\frac{235}{92}U \rightarrow \frac{231}{90}Th + X$					
	O tipo de decaimento sofrido pelo urânio nessa reacção e a partícula X são, respectivamente:					
	A. decaimento alfa, núcleo do átomo de hélio C. decaimento gama, radiação electromagnética D. decaimento alfa, protão E. decaimento alfa, hélio					
18.	Dada a seguinte reacção de desintegração: $\frac{238}{92} U \rightarrow \frac{4}{2} He + \frac{234}{90} Th$. Pode-se concluir que se trata de uma reacção de:					
	A. desintegração beta B. desintegração β^- C. desintegração alfa D. desintegração gama E. desintegração β^+					
19.	Ao sofrer um determinado decaimento radioactivo, o elemento carbono 14 transforma-se em nitrogênio 14 segundo a reacção					
	mostrada abaixo:					
	${}^{14}_{6}C \rightarrow {}^{14}_{7}N + X$					
	Qual é o tipo de decaimento sofrido pelo carbono?					
	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético					
20.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos					
20.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação?					
	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta					
20.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm 2 e a da menor secção é 10 cm 2. A massa específica do					
	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm 2 e a da menor secção é 10 cm 2. A massa específica do					
	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm^2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2).					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm^2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2).					
	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 \frac{kg}{m^3} enquanto que na secção (2) é 0,09 \frac{kg}{m^3}. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etílico					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm^2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2).					
21.	Qual é o tipo de decaimento sofrido pelo carbono?A. betaB. alfaC. gamaD. electrónicoE. magnéticoO avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação?A. betaB. alfaC. gamaD. raio XE. ultravioletaAr escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 $\frac{kg}{m^3}$ enquanto que na secção (2) é 0,09 $\frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2).A. 26,7B. 33C. 3,2D. 2,67E. 3,3Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etílico (ρ=0,81×10 3 \frac{kg}{m^3}).Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente,					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm 2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26.7 B. 33 C. 3.2 D. 2.67 E. 3.3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm^2 , totalmente submerso em álcool etílico ($\rho = 0.81 \times 10^3 \frac{kg}{m^3}$). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, $g = 9.8 \frac{m}{s^2}$.					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm 2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26.7 B. 33 C. 3.2 D. 2.67 E. 3.3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm^2 , totalmente submerso em álcool etílico ($\rho = 0.81 \times 10^3 \frac{kg}{m^3}$). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, $g = 9.8 \frac{m}{s^2}$.					
21.	Qual é o tipo de decaimento sofrido pelo carbono?A. betaB. alfaC. gamaD. electrónicoE. magnéticoO avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação?A. betaB. alfaC. gamaD. raio XE. ultravioletaAr escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 $\frac{kg}{m^3}$ enquanto que na secção (2) é 0,09 $\frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2).A. 26,7B. 33C. 3,2D. 2,67E. 3,3Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etílico (ρ=0,81×10 3 \frac{kg}{m^3}).Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente,					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm^2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26.7 B. 33 C. 3.2 D. 2.67 E. 3.3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm^2 , totalmente submerso em álcool etílico ($\rho = 0.81 \times 10^3 \frac{kg}{m^3}$). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, $g = 9.8 \frac{m}{s^2}$. A. 12.29 B. 12 C. 1.29 D. 13 E. 0.12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A. a distância média entre as moléculas aumenta. B. a massa específica das moléculas aumenta com a temperatura.					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm 2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26.7 B. 33 C. 30 D. 30 E. 30 E. 30 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 30 cm 30 considerando que no local, 30 gença empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, 30 gença exercida pelo gás sobre as paredes do recipiente aumenta porque A. 30 B. 30 C. 30 D. 30 E. 30 E. 30 C. 30 D. 30 E. 30 C. 30 D. 30 E. 30 E. 30 C. 30 P. 30 E. 30 E. 30 P. 30 E. 30 P. 30 E. 30 P. 30 E. 30 P. 30 P. 30 E. 30 P. 30					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm^2 e a da menor secção é 10 cm^2 . A massa específica do ar na secção (1) é $0.12 \frac{kg}{m^3}$ enquanto que na secção (2) é $0.09 \frac{kg}{m^3}$. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26.7 B. 33 C. 3.2 D. 2.67 E. 3.3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm^2 , totalmente submerso em álcool etílico ($\rho = 0.81 \times 10^3 \frac{kg}{m^3}$). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, $g = 9.8 \frac{m}{s^2}$. A. 12.29 B. 12 C. 1.29 D. 13 E. 0.12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A. a distância média entre as moléculas aumenta. B. a massa específica das moléculas aumenta com a temperatura.					
22.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? E. ultravioleta A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 kg/m³ enquanto que na secção (2) é 0.09 kg/m³. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etílico (ρ=0,81×10³ kg/m³). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, g=9,8 m/m². A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A. a distância média entre as moléculas aumenta. B. a massa específica das moléculas aumenta. D. as moléculas passam a se chocar com maior frequência com as paredes. E. o tempo de contacto das moléculas com as					
21.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 kg/m² enquanto que na secção (2) é 0,09 kg/m³. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etílico (ρ=0,81×10 3 kg/m³). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, Considerando que no local, g=9,8 m/m³2. A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque					
22.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refera a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 kg/m³ enquanto que na secção (2) é 0,09 kg/m³. Sendo a velocidade na secção (1) 10 m/s, determine q velocidade na secção (2). Sendo a velocidade na secção (1) 10 m/s, determine q velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etilico (ρ=0,81×10 3 kg/m³). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, g=9,8 m/m³. A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A. a distância média entre as moléculas aumenta com a temperatura. C. a perda de ene					
22.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 kg/m³ enquanto que na secção (2) é 0,09 kg/m³. Sendo a velocidade na secção (1) 10 m/s, determine a velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etilico (ρ=0.81×10 ³ kg/m³). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, g=9.8 m/m³. A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A a distância média entre as moléculas aumenta. B. a massa específica das moléculas aumenta com a temperatura. D as moléculas passam a se chocar com maior frequência com as paredes.					
22.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento radioactivo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refera a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção é 10 cm². A massa específica do ar na secção (1) é 0,12 kg/m³ enquanto que na secção (2) é 0,09 kg/m³. Sendo a velocidade na secção (1) 10 m/s, determine q velocidade na secção (2). Sendo a velocidade na secção (1) 10 m/s, determine q velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etilico (ρ=0,81×10 3 kg/m³). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, g=9,8 m/m³. A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A. a distância média entre as moléculas aumenta com a temperatura. C. a perda de ene					
22.	Qual é o tipo de decaimento sofrido pelo carbono? A. beta B. alfa C. gama D. electrónico E. magnético O avanço científico e tecnológico da física nuclear permitiu conhecer, com maiores detalhes, o decaimento atómativo dos núcleos atómicos instáveis, desenvolvendo-se algumas aplicações para a radiação de grande penetração no corpo humano, utilizada, por exemplo, no tratamento do câncro. A aplicação citada no texto se refere a qual tipo de radiação? A. beta B. alfa C. gama D. raio X E. ultravioleta Ar escoa em um tubo convergente. A área da maior secção do tubo é 20 cm² e a da menor secção (1) cm². A massa específica do ar na secção (1) é 0.12 kg/m³ enquanto que na secção (2) é 0.09 kg/m³. Sendo a velocidade na secção (1) 10 m/s, determine q velocidade na secção (2). A. 26,7 B. 33 C. 3,2 D. 2,67 E. 3,3 Imagine um cilindro de alumínio com 9 cm de altura e com uma área de base igual a 18 cm², totalmente submerso em álcool etílico (ρ=0.81×10 ³ kg/m³). Calcule o empuxo (em unidades do SI) sofrido por este cilindro em virtude do fluido existente, considerando que no local, g=9,8 m/s² A. 12,29 B. 12 C. 1,29 D. 13 E. 0,12 Um gás é aquecido a volume constante. A pressão exercida pelo gás sobre as paredes do recipiente aumenta porque A a distância média entre as moléculas aumenta. B. a massa específica das moléculas aumenta com a temperatura. C. a perda de energia cinética das moléculas com as paredes					

25.	As grandezas que definem completamente o estado de um gás são: A. somente pressão e volume B. apenas o volume e a temperatura C. massa e volume D. temperatura, pressão e volume E. massa, pressão, volume e temperatura						
26.							
	grandezas. Assinale quais são. A. Trabalho, calor e densidade D. Pressão, volume e temperatura B. Trabalho, calor e energia interna E. Pressão, calor, trabalho C. Calor, energia interna e volume						
27.	C. L						
	é:						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
28.	Assinale o que for incorrecto nas afirmações que se seguem:						
	 A. A energia interna total permanece constante em um sistema termodinâmico isolado B. Quando um sistema termodinâmico recebe calor, a variação na quantidade de calor que este possui é positiva C. O trabalho é positivo, quando é realizado por um agente externo sobre o sistema termodinâmico, e negativo, quando é realizado pelo próprio sistema D. Não ocorre troca de calor entre o sistema termodinâmico e o meio, em uma transformação adiabática E. Não ocorre variação da energia interna de um sistema termodinâmico, em uma transformação isotérmica 						
29.	O estado inicial de uma certa quantidade de gás ideal é caracterizado pelo ponto A, no gráfico $P \times V$, representado abaixo. A						
	temperatura no ponto A é de 300K. Variaram as grandezas P, V e T da maneira como está representado no gráfico. Pode-se						
1	afirmar que						
	10° P/Pa A C C C C C C C C C C C C C C C C C C						
	2 A						
	0 4 8 12 VAIII						
	 A. a transformação AB é isovolumétrica e BC é isobárica. C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. D. a transformação AB é isobárica e BC é isovolumétrica. 						
30.	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C? A 20 B 30 C 25 D. 25 E. 22						
30.	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C.2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial.						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. D. A pressão final é o dobro da pressão inicial.						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determine a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. D. A pressão final é o dobro da pressão inicial.						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. D. A pressão final é o dobro da pressão inicial. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C ? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0,8 PA. Qual é a relação entre os						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. D. A pressão final é o dobro da pressão inicial. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C ? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0,8 PA. Qual é a relação entre os						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C ? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0,8 PA. Qual é a relação entre os						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 ° C ? A. 20 B. 30 C.2,5 D. 25 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. B. A pressão final será o quádruplo da pressão inicial. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0,8 PA. Qual é a relação entre os						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C.2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão entre o volumes V _A e V _B ?						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C.2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão entre o volumes V _A e V _B ?						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C. 2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determina a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0.8 PA. Qual é a relação entre ox volumes VA e VB?						
	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isovolumétrica. Qual o volume aproximado, em litros, de 1 mol de ar à pressão de 1 atm e à temperatura de 30 °C? A. 20 B. 30 C. 2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determino a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial 1, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0,8 PA. Qual é a relação entre or volumes VA e VB? A. VA = VB B. 4 VA = 5 VB C. 5 VA = 4 VB D. 8 VA = VB E. VA = 8 VB E. VA = 8 VB T. representa volume e T. volume e						
31.	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de I mol de ar à pressão de I atm e à temperatura de 30 °C? A. 20 B. 30 C. 2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determino a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial I, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0.8 PA. Qual é a relação entre or volumes VA e VB? A. VA = VB B. 4 VA = 5 VB C. 5 VA = 4 VB D. 8 VA = VB E. VA = 8 VB Um gás ideal sofre uma transformação isobárica. Qual dos gráficos abaixo, (onde V representa volume e T represent						
31.	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de I mol de ar à pressão de I atm e à temperatura de 30 °C? A. 20 B. 30 C. 2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determino a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial I, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0.8 PA. Qual é a relação entre or volumes VA e VB? A. VA = VB B. 4 VA = 5 VB C. 5 VA = 4 VB D. 8 VA = VB E. VA = 8 VB Um gás ideal sofre uma transformação isobárica. Qual dos gráficos abaixo, (onde V representa volume e T represent						
31.	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de I mol de ar à pressão de I atm e à temperatura de 30 °C? A. 20 B. 30 C. 2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determino a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial I, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0.8 PA. Qual é a relação entre or volumes VA e VB? A. VA = VB B. 4 VA = 5 VB C. 5 VA = 4 VB D. 8 VA = VB E. VA = 8 VB Um gás ideal sofre uma transformação isobárica. Qual dos gráficos abaixo, (onde V representa volume e T represent						
31.	C. a transformação AB é isocórica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isovolumétrica. E. a transformação AB é isobárica e BC é isotérmica. Qual o volume aproximado, em litros, de I mol de ar à pressão de I atm e à temperatura de 30 °C? A. 20 B. 30 C. 2,5 D. 25 E. 22 Em uma transformação isovolumétrica, a temperatura final do processo é o quádruplo da temperatura inicial. Sendo assim, determino a relação entre a pressão final e inicial. A. A pressão final será quatro vezes menor. C. A pressão final e a inicial serão iguais. E. Não haverá variação de pressão, uma vez que a transformação é isocórica. O gráfico apresentado abaixo refere-se a um gás ideal, em que em seu estado inicial I, encontra-se a uma pressão PA e volume VA Ao ser submetido a uma transformação isotérmica, o gás passa para o estado 2, em que PB = 0.8 PA. Qual é a relação entre or volumes VA e VB? A. VA = VB B. 4 VA = 5 VB C. 5 VA = 4 VB D. 8 VA = VB E. VA = 8 VB Um gás ideal sofre uma transformação isobárica. Qual dos gráficos abaixo, (onde V representa volume e T represent						

34.	O CO2 dissolvido em bebidas carbonatadas, como refrigerantes e cervejas, é o responsável pela formação da espuma nessas bebidas
	e pelo aumento da pressão interna das garrafas, tornando-a superior à pressão atmosférica. O volume de gás no "pescoço" de uma
	garrafa com uma bebida carbonatada a 7 °C é igual a 24 ml, e a pressão no interior da garrafa é de 2,8 × 10 5 Pa . Trate o gás do
	"pescoço" da garrafa como um gás perfeito. Considere que a constante universal dos gases é de aproximadamente 8 $\frac{J}{mol.K}$.
	Determine o número de moles de gás no "pescoço" da garrafa.
	A. $1,2 \times 10^{-5}$ B. $3,0 \times 10^{-5}$ C. $3,0 \times 10^{-3}$ D. $1,2 \times 10^{-3}$ E. $3,0 \times 10^{-3}$
35.	Um gás ideal é comprimido por um agente externo, ao mesmo tempo em que recebe calor de 300 J de uma fonte térmica.
	Sabendo-se que o trabalho do agente externo é de 600 J, então qual será a variação de energia interna do gás? A. 600 J B. 900 J C. 400 J D. 300 J E. 500 J
36.	A respeito da primeira lei da Termodinâmica, marque a alternativa incorrecta:
	A. Em uma transformação isotérmica, a variação da energia interna é nula
	B. A primeira lei da Termodinâmica trata da conservação da energia
	 C. Em uma transformação isocórica, não haverá realização de trabalho D. Em uma transformação adiabática, o trabalho será realizado sobre gás quando a variação da energia interna é positiva
	E. A primeira lei da Termodinâmica diz que o calor fornecido a um gás é igual à soma do trabalho realizado pelo gás e a sua variação
	da energia interna
37.	Assinale a opção correcta em relação às afirmações:
	 A. o período de oscilação independe do comprimento do pêndulo
	B. o período de oscilação é proporcional ao comprimento do pêndulo
	C. o período de oscilação independente do valor da aceleração da gravidade local
	 D. o período de oscilação é inversamente proporcional ao valor da aceleração da gravidade local E. o período de oscilação independe da massa da esfera pendular
38.	Uma massa de 50,0 g é presa à extremidade inferior de uma mola vertical e colocada em vibração. Se a velocidade má da
30.	massa é 15,0 cm/s e o período 0,5 s, ache o valor da velocidade angular do corpo, em $\frac{rad}{s}$.
	A. 12,57 B. 1,5 C. 3π D. 7,5 E. 10
39.	O gráfico ao lado mostra a aceleração $a(t)$ em função de tempo de um corpo de massa $m = 3 kg$ preso a uma mola ideal de constante
	K em movimento oscilatório. Determine o período de oscilações.
	A. 5,5 s B. 4,0 s
	C. 6,0 s
	D. 2,5 s
	D. 2,5 s E. 8,0 s
	t(B)
	*TITILIA
	-10
40.	O gráfico abaixo representa as posições ocupadas por um móvel em função do tempo, quando oscila. Determine a velocidade
	angular desse movimento.
	× (m) _†
	B 1 /2 3 4 1(sc)

Fim!

D. π

C. $\frac{\pi}{4}$

 \mathbf{B} . 4π

A. 3π

 $\mathbf{E}. \ \frac{\pi}{2}$